
syle関数

2021年 11月 16日

1 STYLE関数
https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.applymap.html?highlight=style%20applymap#pandas.io.formats.style.Styler.applymap

[30]: import pandas as pd

import numpy as np

1.0.1 サンプル DF作成
[53]: np.random.seed(0)

df = pd.DataFrame(np.random.randint(-2000, 5000, (4,4)), columns=list('ABCD'))

df.iloc[1,2] = -10.34567

df.iloc[3,1] = 23456.2345

df.iloc[3,3] = np.nan

df

[53]: A B C D

0 732 607.0 -347.0 1264.0

1 2931 2859.0 -10.3 -967.0

2 2373 3874.0 3924.0 4743.0

3 4744 23456.2 4458.0 NaN

1.1 NaNの背景色に色付け
• 参考 HP

[56]: display(

df.style.highlight_null(),

df.style.highlight_null(null_color='yellow')

1

https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.highlight_null.html

)

<pandas.io.formats.style.Styler at 0x7fe377ac19d0>

<pandas.io.formats.style.Styler at 0x7fe377ac1f70>

1.2 style.applymap(関数)

• CSSを返す関数を作成し、df.style.applymap(関数)の引数とする
• カスタマイズする場合は、CSSの記法を調べる

1.2.1 文字色を変更
[34]: def less_than_zero(val):

color = 'red' if val < 0 else 'black'

return 'color: {}'.format(color)

[35]: less_than_zero(10)

この式はエラー処理がなされてないため、strだとエラーになる

[35]: 'color: black'

• 文字列に変数の値を展開する際には、3つのやり方があります。もしかしたら私が知らないだけで他に
もあるかもしれません。

• sprintfスタイル: ‘%s, %s’ % (‘Hello’, ‘World’)
• 拡張 sprintfスタイル: ‘%(a)s, %(b)s’ % dict(a=‘Hello’, b=‘World’)
• formatメソッド利用: ‘{0}, {1}’.format(‘Hello’, ‘World’)

[36]: df.style.applymap(less_than_zero)

[36]: <pandas.io.formats.style.Styler at 0x7fe377a6e070>

[37]: def less_than_zero_2(v, color):

return f"color: {color};" if v < 0 else None

display(

df.style.applymap(less_than_zero_2, color='blue'),

df.style.applymap(less_than_zero_2, color='green', subset='C'),

df.style.applymap(less_than_zero_2, color='purple', subset=['A','C'])

)

<pandas.io.formats.style.Styler at 0x7fe37651fac0>

2

<pandas.io.formats.style.Styler at 0x7fe37651ff70>

<pandas.io.formats.style.Styler at 0x7fe373b486d0>

1.2.2 文字を太字にする
[38]: def font_bold(val):

font = 'bold' if val < 0 else ""

return 'font-weight:{}'.format(font)

[39]: df.style.applymap(font_bold)

[39]: <pandas.io.formats.style.Styler at 0x7fe377a6e2e0>

1.2.3 背景色を変える
[40]: def change_bgcolor(val, color):

return f'background-color:{color}' if val > 4000 else ''

[41]: df.style.applymap(change_bgcolor, color='yellow')

[41]: <pandas.io.formats.style.Styler at 0x7fe377a6e4f0>

1.3 複数の色付け
• メソッドチェーンで複数条件も可能

[42]: df.style.applymap(less_than_zero).highlight_null()

[42]: <pandas.io.formats.style.Styler at 0x7fe377a6e9d0>

[43]: df.style.applymap(less_than_zero).highlight_null().applymap(font_bold)

[43]: <pandas.io.formats.style.Styler at 0x7fe377a3f5b0>

2 3桁区切り
• 嵌った箇所。結論、以下

■df.style.format(‘{:,}’)
[44]: df = pd.DataFrame(np.random.randint(-2000, 5000, (4,4)), columns=list('ABCD'))

df.iloc[1,2] = -10.34567

3

df.iloc[3,1] = 23456.2345

df

[44]: A B C D

0 599 135.0 222.0 897

1 -299 -1463.0 -10.3 4216

2 4921 4036.0 163.0 3072

3 2851 23456.2 -129.0 496

[45]: # これがベスト
df.style.format('{:,}')

[45]: <pandas.io.formats.style.Styler at 0x7fe377a79c70>

[46]: # メソッドチェーンでもいける
df.style.format('{:,}').applymap(less_than_zero).highlight_null()

[46]: <pandas.io.formats.style.Styler at 0x7fe377a6ec70>

2.0.1 注意
• 以下の関数は単体で使うには問題ないが、他条件とメソッドチェーンができない

[47]: def thousands(val):

try:

return "{:,}".format(val)

except ValueError as e:

return val

■styleを抜くと効く、style付与すると NG
[48]: display(

df.applymap(thousands), # �こっちは効くが
df.style.applymap(thousands) # 桁区切りが適用されてない

)

以下だとエラーになる
df.applymap(thousands).applymap(less_than_zero).highlight_null() # �で他条件とメ
ソッドチェーン不可

A B C D

0 599 135.0 222.0 897

4

1 -299 -1,463.0 -10.34567 4,216

2 4,921 4,036.0 163.0 3,072

3 2,851 23,456.2345 -129.0 496

<pandas.io.formats.style.Styler at 0x7fe377a6e610>

3 以下、nkmkより。
• https://note.nkmk.me/python-pandas-option-display/

• https://note.nkmk.me/python-pandas-option-setting/

[5]: import pandas as pd

import numpy as np

import pprint

4 pandasの表示設定変更
4.1 バージョン確認

• バージョンが違うと設定のデフォルト値などが違う場合あり

[6]: print(pd.__version__)

1.2.4

4.2 小数点以下の桁数：display.precison

• デフォルト：6
• 小数点以下の桁数を制御する

[7]: s_decimal = pd.Series([123.456, 12.3456, 1.23456, 0.123456, 0.0123456, 0.00123456])

[8]: print(s_decimal)

0 123.456000

1 12.345600

2 1.234560

3 0.123456

4 0.012346

5

5 0.001235

dtype: float64

• 設定値により変わる

[12]: pd.options.display.precision = 4

print(s_decimal)

0 123.4560

1 12.3456

2 1.2346

3 0.1235

4 0.0123

5 0.0012

dtype: float64

[13]: pd.options.display.precision = 2

print(s_decimal)

0 1.23e+02

1 1.23e+01

2 1.23e+00

3 1.23e-01

4 1.23e-02

5 1.23e-03

dtype: float64

4.3 有効数字（有効桁数）：display.float_format

• 小数点や整数部も含む有効数字（有効桁数）を指定する場合
• デフォルト：None
• ‘.[桁数]f’・・・小数点以下の桁数
• ‘.[桁数]g’・・・全体の桁数（有効数字）、を指定

[15]: pd.options.display.float_format = '{:.2f}'.format

print(s_decimal)

0 123.46

1 12.35

6

2 1.23

3 0.12

4 0.01

5 0.00

dtype: float64

[16]: pd.options.display.float_format = '{:.4g}'.format

print(s_decimal)

0 123.5

1 12.35

2 1.235

3 0.1235

4 0.01235

5 0.001235

dtype: float64

4.4 四捨五入についての注意
• display.precison、display.float_formatでは値が丸められるが、四捨五入ではなく偶数への丸めとなる
• 例）0.5は 0に丸められる

4.4.1 偶数への丸め（round to even）・・・わかりにくい！とばす
• 偶数への丸めは、端数が 0.5より小さいなら切り捨て
• 端数が 0.5より大きいならは切り上げ
• 端数がちょうど 0.5なら切り捨てと切り上げのうち「結果が偶数」となる方へ丸める
• (つまり偶数 +0.5なら切り捨て、奇数 +0.5なら切り上げとなる）

[23]: df_decimal = pd.DataFrame({'s': ['0.4', '0.5', '0.6', '1.4', '1.5', '1.6', '2.5',␣

↪→'2.6','3.6', '4.5'],

'f': [0.4, 0.5, 0.6, 1.4, 1.5, 1.6, 2.5, 2.6, 3.6, 4.5]})

pd.options.display.float_format = '{:.0f}'.format

print(df_decimal)

s f

0 0.4 0

1 0.5 0

2 0.6 1

7

3 1.4 1

4 1.5 2

5 1.6 2

6 2.5 2

7 2.6 3

8 3.6 4

9 4.5 4

4.4.2 小数点以下で丸める場合は、値によって偶数への丸めになったり、奇数への丸めになったりする
[28]: df_decimal2 = pd.DataFrame({'s': ['0.04', '0.05', '0.06', '0.14', '0.15', '0.16',␣

↪→'0.24', '0.25', '0.26', '0.34', '0.35', '0.36'],

'f': [0.04, 0.05, 0.06, 0.14, 0.15, 0.16, 0.24, 0.25, 0.

↪→26, 0.34, 0.35, 0.36]})

pd.options.display.float_format = '{:.1f}'.format

print(df_decimal2)

s f

0 0.04 0.0

1 0.05 0.1

2 0.06 0.1

3 0.14 0.1

4 0.15 0.1

5 0.16 0.2

6 0.24 0.2

7 0.25 0.2

8 0.26 0.3

9 0.34 0.3

10 0.35 0.3

11 0.36 0.4

8

	STYLE関数
	NaNの背景色に色付け
	style.applymap(関数)
	複数の色付け

	3桁区切り
	以下、nkmkより。
	pandasの表示設定変更
	バージョン確認
	小数点以下の桁数： display.precison
	有効数字（有効桁数）：display.float_format
	四捨五入についての注意

