
pandas時系列データ（基本）

● 「Pythonによるデータ分析入門」P347〜より抜粋

標準ライブラリ関連

datetime

from datetime import datetime

now = datetime.now()

now

>>datetime.datetime(2021, 5, 8, 9, 49, 16, 657431)

now.year, now.month, now.day

>>(2021, 5, 8)

delta = datetime(2021, 5, 8) - datetime(2021, 1, 1)

delta

>>datetime.timedelta(days=127)

delta = datetime(2021, 5, 8, 9, 36) -datetime(2021,1,1)

delta

>>datetime.timedelta(days=127, seconds=34560)

delta.days

>>127

timedelta

from datetime imort timedelta

start = datetime(2021, 5,8)

start + timedelta(60)

>>datetime.datetime(2021, 7, 7, 0, 0)

strftime, strptime

stamp = datetime(2021, 5, 8)

stamp

>>datetime.datetime(2021, 5, 8, 0, 0)

str(stamp)

>>’2021-05-08 00:00:00’

stamp.strftime(‘%Y%m%d’)

>>’20210508’

stamp.strftime(‘%y-%m-%d’)

>>’21-05-08’

文字列をdate型へ型を合わせてパース

value = ‘20210508’

datetime.strptime(value, ‘%Y%m%d’)

>>datetime.datetime(2021, 5, 8, 0, 0)

datestrs = [‘2021/4/1’, ‘2021/5/1’]

[datetime.strptime(x, ‘%Y/%m/%d) for x in datestrs]

>>[datetime.datetime(2021, 4, 1, 0, 0), datetime.datetime(2021, 5, 1, 0,

0)]

Datetimeフォーマット一覧

型 説明

%Y yyyy

%y yy

%m 月mm

%d 日dd

%H 時間（24時間）

%I 時間（12時間）

%M 2桁の分

%S 2桁の秒

%w 曜日（0:日曜〜）

%F %Y-%M-%dの短縮形2021-5-8

%D %m%d%yの短縮形 08/05/21

dateutil.parser > parse

from dateutil.parser import parse

自動でパースしてくれる

parse(‘2021/5/8’)

>>datetime.datetime(2021, 5, 8, 0, 0)

parse(‘2021/5/8 10:15’)

>>datetime.datetime(2021, 5, 8, 10, 15)

これは無理なのでstrptimeでパースがよい

parse(‘210508’)

>>datetime.datetime(2008, 5, 21, 0, 0)

これも無理、年は４桁がよいのかも

parse(‘21/5/8’)

>>datetime.datetime(2008, 5, 21, 0, 0)

Pandas関連

pd.to_datetime()

● 日時データに変換

● pandasの場合、標準の日付であればパース可能

datestrs = ['2021-05-08 10:20:00', '2021-05-09 10:20:00']

pd.to_datetime(datestrs)

>>DatetimeIndex(['2021-05-08 10:20:00', '2021-05-09 10:20:00'],

dtype='datetime64[ns]', freq=None)

pd.date_range()

● 日時データ範囲を生成

pd.date_range('2021/5/1', '2021/5/10')

>>DatetimeIndex(['2021-05-01', '2021-05-02', '2021-05-03',〜

'2021-05-10'], dtype='datetime64[ns]', freq='D')

pd.date_range(start='2021/5/1', periods=10)

>>DatetimeIndex(['2021-05-01', '2021-05-02', '2021-05-03',〜

'2021-05-10'], dtype='datetime64[ns]', freq='D')

pd.date_range(end='2021/5/28', periods=5)

>>DatetimeIndex(['2021-05-24', '2021-05-25', '2021-05-26',〜

'2021-05-28'],dtype='datetime64[ns]', freq='D')

タイムスタンプとしては午前零時に標準化したい場合

pd.date_range(‘2021-05-09 12:24:28’, periods=5, normalize=True)

>>DatetimeIndex(['2021-05-09', '2021-05-10', '2021-05-11',〜

'2021-05-13'],dtype='datetime64[ns]', freq='D')

毎月1日

pd.date_range('2021/5/1', periods=5, freq='MS')

>>DatetimeIndex(['2021-05-01', '2021-06-01', '2021-07-01',〜

'2021-09-01'],dtype='datetime64[ns]', freq='MS')

毎月末

pd.date_range('2021/5/1', periods=5, freq='M')

>>DatetimeIndex(['2021-05-31', '2021-06-30', '2021-07-31',〜

'2021-09-30'],dtype='datetime64[ns]', freq='M')

時系列の基準頻度（P359より抜粋）

文字 オフセットクラス 説明

B BusinessDay 毎営業日

M MonthEnd 暦通りの月末ごと

BM BusinessMonthEnd 月の最終営業日

MS MonthBegin 暦通りの月初ごと

BMS BusinessMonthBegin 月の営業開始日ごと

W-MON,W-TUE,... Week 毎週指定した曜日ごと

時系列のサンプル作成

index = pd.date_range(‘2021/5/1’, periods=100)

ts = pd.DataFrame(np.random.randn(100), index=index, columns=[‘VALUE’])

５月だけを取り出す

ts[‘2021/5’]

以降を取り出す

ts[‘2021/5/25’:]

一定期間を取り出す

ts[‘2021/5/25’:’2021/6/12’]

文字列⇄日時の型変換

● note.mknk.meより

● pd.read_csv等で取り込んだ場合、すべて文字列になっている

1.読込み後：文字列→datetime型に変換（読込み後）

df.dtypes

>>A object

>>B object

>>dtype: object

type(df[‘A’][0])

>>str

文字列→datetime型へ変換（デフォルト）

pd.to_datetime(df[‘A’])

>>0 2017-11-01 12:24:00

>>1 2017-11-18 23:00:00

>>2 2017-12-05 05:05:00

〜｜

>>Name: A, dtype: datetime64[ns]

文字列→datetime型へ変換（フォーマット指定。上記でうまくいかない場合）

pd.to_datetime(df[‘A’], format=’%Y年%m月%d日% %H時%M分’)

>>0 2017-11-01 12:24:00

>>1 2017-11-18 23:00:00

>>2 2017-12-05 05:05:00

〜

>>Name: B, dtype: datetime64[ns]

重要：列を新規追加（datetime型）（オリジナルを変えず列を追加するのがよい）

df[‘X’] = pd.to_datetime(df[‘A’],〜)

https://note.nkmk.me/python-pandas-time-series-datetimeindex/

df.dtypes

>>A object

>>B object

>>X datetime64[ns]

>>dtype: object

年の抽出

df['X'].dt.year　　←month, dayでも同様

0 2017

1 2017

2 2017

3 2017

4 2018

5 2018

Name: X, dtype: int64

曜日（６：日曜日）を表示

df['X'].dt.dayofweek

0 2

1 5

2 1

3 4

4 0

5 4

Name: X, dtype: int64

月曜日だけを表示

df[df['X'].dt.dayofweek == 0]

2.読込み後：datetime型→文字列に変換

datetime型→文字列に変換（デフォルト）

df[‘X’].astype(str)

>>0 2017-11-01 12:24:00

>>1 2017-11-18 23:00:00

>>2 2017-12-05 05:05:00

>>~

>>Name: X, dtype: object

datetime型→文字列に変換（フォーマット指定）

df[‘X’].dt.strftime(‘%Y年%m月%d日’)

>>0 2017年11月01日

>>1 2017年11月18日

>>2 2017年12月05日

>>~

>>Name: X, dtype: object

列を新規追加

df[‘日付’] = df[‘X’].dt.strftime(‘%Y年%m月%d日’)

3.読込み時：文字列→datetime型に変換

url =

'https://raw.githubusercontent.com/nkmk/python-snippets/8501c6f55aa9b1c5ec

fc940f18ba4aef23325cd8/notebook/data/src/sample_datetime_multi.csv'

parse_datesに、datetime型へ変換したい列（列：0）を渡す

df_csv = pd.read_csv(url, parse_dates=[0])

df_csv

df_csv.dtypes

>>A datetime64[ns]

>>B object

>>dtype: object

標準的な書式でない場合は「date_parser」に読み込む書式を渡して読み込む

Lambda箇所はわかりにくい（dateはデフォルト？）

df_csv2 = pd.read_csv(url,

　　　　　　　　　　　　parse_dates=[1],

　　　　　　　　　　　　date_parser=lambda date: pd.to_datetime(date, \

　　format='%Y年%m月%d日 %H時%M分'))

df_csv2.dtypes

>>A object

>>B datetime64[ns]

>>dtype: object

→仮にdate_parserなしで読み込むと、Bはobjectのまま読み込まれる

indexに指定した列をdatetime型へ変換する場合（parse_dates=True)

df_csv3 = pd.read_csv(url,

index_col=1,

parse_dates=True,

date_parser=lambda date: pd.to_datetime(date,\

format='%Y年%m月%d日 %H時%M分'))

df_csv3

pd.read_excel()でもparse_dates, date_parser　を利用可能

DatetimeIndex
● datetime64[ns]型のDataFrameで日付をindexにするとDatetimeIndexになる

● いろんな機能が使えるらしいがよくわかっていない

df_i = df.set_index(‘X’)

df_i

df_i.index.strftime(‘%Y%m%d’)

>>Index(['20171101', '20171118', '20171205', '20171222', '20180108',

>>'20180119'], dtype='object', name='X')

