
レシピ92 matplotlibでデータの可視化（P319）
matplotlibはあらゆるプロットができる
pandasのDataFrameも受付可能（2015年）（以前はNumpuyかPythonリストのみ）

このレシピでは、映画製作費の時間傾向を可視化する

（1）movieデータセットを読み込み、年ごとの製作費のmedianを計算し、5年移動平均でデータを平滑化する

見やすいように転置

title_year
1916.0 0.385907
1920.0 0.100000
1925.0 0.245000
1927.0 6.000000
1929.0 0.379000
 ...
2012.0 17.000000
2013.0 20.000000
2014.0 15.000000
2015.0 14.400000
2016.0 22.500000
Name: budget, Length: 91, dtype: float64

title_year
2012.0 20.893
2013.0 19.893
2014.0 19.100
2015.0 17.980
2016.0 17.780
Name: budget, dtype: float64

（2）データをNumpy配列にする（index、移動平均）

pandas.core.series.Series

array([1916., 1920., 1925., 1927., 1929., 1930., 1932., 1933., 1934.,
 1935., 1936., 1937., 1938., 1939., 1940., 1941., 1942., 1943.,
 1944., 1945., 1946., 1947., 1948., 1949., 1950., 1951., 1952.,
 1953., 1954., 1955., 1956., 1957., 1958., 1959., 1960., 1961.,
 1962., 1963., 1964., 1965., 1966., 1967., 1968., 1969., 1970.,
 1971., 1972., 1973., 1974., 1975., 1976., 1977., 1978., 1979.,
 1980., 1981., 1982., 1983., 1984., 1985., 1986., 1987., 1988.,
 1989., 1990., 1991., 1992., 1993., 1994., 1995., 1996., 1997.,
 1998., 1999., 2000., 2001., 2002., 2003., 2004., 2005., 2006.,
 2007., 2008., 2009., 2010., 2011., 2012., 2013., 2014., 2015.,
 2016.])

array([0.385907 , 0.2429535 , 0.24363567, 1.68272675, 1.4219814 ,
 2.1348 , 2.2748 , 2.2897 , 1.1547 , 1.2007 ,
 0.6807 , 0.9207 , 1.2212736 , 1.7162736 , 1.9838736 ,
 1.9638736 , 1.7538736 , 1.9148 , 1.827 , 1.7768754 ,
 2.1628754 , 2.4328754 , 2.5774754 , 2.3652754 , 2.779757 ,
 2.6028428 , 2.6510028 , 2.2710028 , 2.7110028 , 2.1972458 ,
 2.53816 , 2.365 , 2.675 , 2.675 , 3.035 ,
 2.835 , 2.9 , 2.9686585 , 2.7486585 , 3.7886585 ,
 3.5886585 , 3.8886585 , 3.72 , 4.44 , 4.2716946 ,
 4.3716946 , 4.0116946 , 4.4394512 , 3.7794512 , 3.2477566 ,
 3.5677566 , 5.2277566 , 6.5 , 8.26 , 9.32 ,
 10.5 , 10.67 , 10.87 , 11.07 , 11.5311046 ,
 12.4111046 , 12.8411046 , 12.7411046 , 13.1411046 , 15.78 ,
 16.9 , 19.3 , 20. , 22.1 , 22.6 ,
 23.8 , 24.8 , 26.7 , 26.1 , 25.3 ,
 25.3 , 23.3 , 23.3 , 23.9 , 24.1 ,
 22.78 , 22.78 , 22.88 , 21.673 , 20.673 ,
 21.493 , 20.893 , 19.893 , 19.1 , 17.98 ,
 17.78])

（3）plotメソッドを使い線グラフを描く。新たなFigureで制作費の移動平均メディアンを時間軸でプロットする

{'fontsize': 20, 'family': 'cursive'}

{'テスト1': '国語', 'テスト2': '算数'}

（4）

映画制作費のメディアンが2000年をピークに減少傾向がわかる
これはおそらくデータセットの構成によるもの。全映画の本数によって制作費の増減があるため
年ごとの映画本数を数える

title_year
1916.0 1
1920.0 1
1925.0 1
1927.0 1
1929.0 1
 ...
2012.0 191
2013.0 208
2014.0 221
2015.0 192
2016.0 86
Name: budget, Length: 91, dtype: int64

（5）

1つのAxeに複数プロットできるため、映画の本数を棒グラフで上記グラフに追加してみる
2つのプロットの単位（金額と本数）が違うため、二軸をつくり、同じ範囲に設定する
1970年以降の映画を対象とした

（6）

制作費上位10本に関して見てみる
上位10本だけの年ごとのデータを5年平均メディアンで出してみる

title_year
1916.0 0.385907
1920.0 0.100000
1925.0 0.245000
1927.0 6.000000
1929.0 0.379000
 ...
2012.0 214.500000
2013.0 200.000000
2014.0 179.000000
2015.0 175.500000
2016.0 176.500000
Name: budget, Length: 91, dtype: float64

title_year
2012.0 192.9
2013.0 195.9
2014.0 191.7
2015.0 186.8
2016.0 189.1
Name: budget, dtype: float64

（7）

（6）で出した移動平均の数値は（1）で出した同様の数値（以下）と比べて1桁多い

つまり2つを同じスケールで表示するのはよくない
よって新たなFigureをつくり、2つのサブプロット（Axes）を使い、2番目のAxesにプロットする
サブプロットを複数つくると全AxesがNumpy配列になる

（補足）

2000年以降の100本を無作為に選び、Y軸にIMDBスコア、X軸に年、の散布図をつくる
点の大きさが制作費
最高点と最低点の映画をannotate、xyパラメータが注釈を付けたい点のタプル、xytextは位置座標の多プル
公式・凡例

https://matplotlib.org/stable/tutorials/intermediate/legend_guide.html

公式・注釈
https://matplotlib.org/2.0.2/users/annotations.html

0 1 2 3 4

color Color Color Color Color NaN

director_name James Cameron Gore Verbinski Sam Mendes Christopher Nolan Doug Walker

num_critic_for_reviews 723.0 302.0 602.0 813.0 NaN

duration 178.0 169.0 148.0 164.0 NaN

director_facebook_likes 0.0 563.0 0.0 22000.0 131.0

actor_3_facebook_likes 855.0 1000.0 161.0 23000.0 NaN

actor_2_name Joel David Moore Orlando Bloom Rory Kinnear Christian Bale Rob Walker

actor_1_facebook_likes 1000.0 40000.0 11000.0 27000.0 131.0

gross 760505847.0 309404152.0 200074175.0 448130642.0 NaN

genres Action|Adventure|Fantasy|Sci-Fi Action|Adventure|Fantasy Action|Adventure|Thriller Action|Thriller Documentary

actor_1_name CCH Pounder Johnny Depp Christoph Waltz Tom Hardy Doug Walker

movie_title Avatar
Pirates of the Caribbean: At World's

End Spectre The Dark Knight Rises
Star Wars: Episode VII - The Force

Awakens

num_voted_users 886204 471220 275868 1144337 8

cast_total_facebook_likes 4834 48350 11700 106759 143

actor_3_name Wes Studi Jack Davenport Stephanie Sigman Joseph Gordon-Levitt NaN

facenumber_in_poster 0.0 0.0 1.0 0.0 0.0

plot_keywords avatar|future|marine|native|paraplegic
goddess|marriage ceremony|marriage

proposal|pi... bomb|espionage|sequel|spy|terrorist
deception|imprisonment|lawlessness|police

offi... NaN

movie_imdb_link
http://www.imdb.com/title/tt0499549/?

ref_=fn_t...
http://www.imdb.com/title/tt0449088/?

ref_=fn_t...
http://www.imdb.com/title/tt2379713/?

ref_=fn_t...
http://www.imdb.com/title/tt1345836/?

ref_=fn_t...
http://www.imdb.com/title/tt5289954/?

ref_=fn_t...

num_user_for_reviews 3054.0 1238.0 994.0 2701.0 NaN

language English English English English NaN

country USA USA UK USA NaN

content_rating PG-13 PG-13 PG-13 PG-13 NaN

budget 237000000.0 300000000.0 245000000.0 250000000.0 NaN

title_year 2009.0 2007.0 2015.0 2012.0 NaN

actor_2_facebook_likes 936.0 5000.0 393.0 23000.0 12.0

imdb_score 7.9 7.1 6.8 8.5 7.1

aspect_ratio 1.78 2.35 2.35 2.35 NaN

movie_facebook_likes 33000 0 85000 164000 0

28 rows × 4916 columns

movie_title color director_name num_critic_for_reviews duration director_facebook_likes actor_3_facebook_likes actor_2_name actor_1_facebook_likes gross ... num_user_for_reviews language

0 Avatar Color
James

Cameron 723.0 178.0 0.0 855.0
Joel David

Moore 1000.0 760505847.0 ... 3054.0 English

1

Pirates of
the

Caribbean:
At World's

End

Color Gore Verbinski 302.0 169.0 563.0 1000.0 Orlando Bloom 40000.0 309404152.0 ... 1238.0 English

2 Spectre Color Sam Mendes 602.0 148.0 0.0 161.0 Rory Kinnear 11000.0 200074175.0 ... 994.0 English

3
The Dark

Knight
Rises

Color Christopher
Nolan

813.0 164.0 22000.0 23000.0 Christian Bale 27000.0 448130642.0 ... 2701.0 English

4

Star Wars:
Episode VII
- The Force

Awakens

NaN Doug Walker NaN NaN 131.0 NaN Rob Walker 131.0 NaN ... NaN NaN

5 rows × 28 columns

In [147… import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

movie = pd.read_csv('movie.csv')
movie.T

Out[147…

In [148… med_budget = movie.groupby('title_year')['budget'].median() / 1e6
med_budget

Out[148…

In [149… med_budget_roll = med_budget.rolling(5, min_periods=1).mean()
med_budget_roll.tail()

Out[149…

In [150… # cf.
type(med_budget_roll)

Out[150…

In [151… years = med_budget_roll.index.values
years

Out[151…

In [152… budget = med_budget_roll.values
budget

Out[152…

In [153… fig, ax = plt.subplots(figsize=(14,4), linewidth=5, edgecolor='.5')
ax.plot(years, budget, linestyle='--',
 linewidth=3, color='.2', label='All Movies');

In [154… # cf.
dict(fontsize=20, family='cursive')

Out[154…

In [155… # cf.keyはクォートなしでもOK
dict(テスト1='国語', テスト2='算数')

Out[155…

In [156… text_kwargs = dict(fontsize=20, family='cursive')

ax.set_title('Median Movie Budget', **text_kwargs) # **って何？
ax.set_ylabel('Millions of Dollars', **text_kwargs)
fig

Out[156…

In [157… movie_count = movie.groupby('title_year')['budget'].count()
movie_count

Out[157…

In [158… # 映画の本数
ct = movie_count.values

ctを標準化、棒グラフの高さとする
ct_norm = ct / ct.max() * budget.max()

5年ごとの年
fifth_year = (years % 5 == 0) & (years >= 1970)

5年ごとのyears（X軸）
years_5 = years[fifth_year]

5年ごとの映画の本数
ct_5 = ct[fifth_year]

5年ごとの棒グラフの高さ（Y軸）
ct_norm_5 = ct_norm[fifth_year]

3はbarの幅
ax.bar(years_5, ct_norm_5, 3, facecolor='.5',
 alpha=.3, label='Move per Year')

表示させる期間を設定
ax.set_xlim(1968, 2017)

バーの上部に本数を追加（ x軸・y軸+.5 の場所に ct_5（本数）の数値をテキストv追加、場所は真ん中）
for x, y, v in zip(years_5, ct_norm_5, ct_5):
 ax.text(x, y + .5, str(v), ha='center')

ax.legend()
fig

Out[158…

In [159… # cf.タイトル先頭に移動
first_col = movie.pop('movie_title')
movie.insert(0, 'movie_title', first_col)
movie.head()

Out[159…

In [165… top10 = movie.sort_values('budget', ascending=False)\
 .groupby('title_year')['budget']\
 .apply(lambda x: x.iloc[:10].median() / 1e6)

top10

Out[165…

In [166… top10_roll = top10.rolling(5, min_periods=1).mean()
top10_roll.tail()

Out[166…

In [176… # sharex = シェアX軸
fig2, ax_array = plt.subplots(2, 1, figsize=(14, 8), sharex=True)

ax1 = ax_array[0]
ax2 = ax_array[1]

ax1.plot(years, budget, linestyle='--', linewidth=3, color='.2', label='All Movies')
ax1.bar(years_5, ct_norm_5, 3, facecolor='.5', alpha=.3, label='Movies per Year')
ax1.legend(loc='upper left')
ax1.set_xlim(1968, 2017)

軸を共有すると目盛りのラベルをすべて取り除き、目盛りの線だけを残す
この目盛り線を取り除くためsetpを使っている（setpがないと上段グラフのX軸に目盛り線が残る）
plt.setp(ax1.get_xticklines(), visible=False)

for x, y, v in zip(years_5, ct_norm_5, ct_5):
 ax1.text(x, y + .5, str(v), ha='center')

ax2.plot(years, top10_roll.values, color='.2', label='Top 10 Movies')
ax2.legend(loc='upper left')

tight_layoutは2つのサブプロットが重なり合わず余分な空白をつくらない
fig2.tight_layout();
suptitleは個別Axesの表題をつくるAxesメソッドのset_titleとは異なりFigure全体の表題をつくる
fig2.suptitle('Median Movie Budget', y=1.02, **text_kwargs)
fig2.text(0, .6, 'Millions of Dollars', rotation='vertical', ha='center', **text_kwargs);

import os
path = os.path.expanduser('~/Desktop/movie_budget.png')
fig2.savefig(path, bbox_inches='tight')

In [179… cols = ['budget', 'title_year', 'imdb_score', 'movie_title']
m = movie[cols].dropna()
m['budget2'] = m['budget'] / 1e6
np.random.seed(0)
movie_samp = m.query('title_year >= 2000').sample(100)

fig, ax = plt.subplots(figsize=(14,6))
ax.scatter(x='title_year', y='imdb_score', s='budget2', data=movie_samp)
idx_min = movie_samp['imdb_score'].idxmin()
idx_max = movie_samp['imdb_score'].idxmax()

for idx, offset in zip([idx_min, idx_max], [.5, -.5]):
 year = movie_samp.loc[idx, 'title_year']
 score = movie_samp.loc[idx, 'imdb_score']
 title = movie_samp.loc[idx, 'movie_title']
 ax.annotate(xy=(year, score),
 xytext=(year + 1, score + offset),
 text=title + ' ({})'.format(score),
 ha='center',
 size=16,
 arrowprops=dict(arrowstyle='fancy'))
ax.set_title('IMDB Score by Year', size=25)
ax.grid(True);

In []:

