
レシピ46 デカルト積の作成（P122）
理解にしにくかったため、丸写し

SeriesやDataFrameが2つ互いに働きあう場合、それぞれのオブジェクトのインデックス（行、カラムも）は
演算の開始前にアラインメント（整列）される。
このインデックスアラインメントは黙って行われ、pandasの初心者がとても驚く
アラインメントでは、インデックスが同じものでない限り、常にデカルト積？が作られる

デカルト積（直積）は数学用語で、集合論でよく使う
2集合のデカルト積とは、両方の集合の要素のあらゆる組み合わせすべてを指す
例えば、トランプの52枚は、13枚のランク（A,2,3....,Q,K）と4つのマークとのデカルト積だ

デカルト積は、常に意図した結果であるとは限らないが、意図しない結果を招かないように
いつどのようんにして作られるのかを知っておくことが非常に重要
このレシピでは、重複があるものの全く同じではないインデックスをもつ2つのSeriesが
足し合わせると予測しない結果になることを学ぶ

（1）一部が同じ値の異なるインデックスをもつ2つのSeriesを作る

a 0
a 1
a 2
b 3
dtype: int64

c 0
a 1
b 2
a 3
b 4
b 5
dtype: int64

（2）2つのSeriesを足し合わせてデカルト積を作る

a 1.0
a 3.0
a 2.0
a 4.0
a 3.0
a 5.0
b 5.0
b 7.0
b 8.0
c NaN
dtype: float64

解説

数学的なデカルト積は、この2つのpandasオブジェクトのとは少し異なる
s1のラベルa（3つ）が、s2のラベルa（2つ）と対になる
結果のSeriesには、対が6つのaラベル、3つのbラベル、1つのcラベルになる
デカルト積は、同じインデックスラベルで起こる
ラベルcの要素はSeriesのs2だけなので、pandasはs1にアラインメントするラベルがないので
その値をデフォルトで欠損値にする
インデックスラベルが、あるオブジェクトにしかない場合、pandasはデフォルトで欠損値にする
これは、どちらのSeriesも値が整数値しかないのに、結果のSeriesのデータ型をfloatにする
こうなるのは、Numpyの欠損値オブジェクト、np.nanがintではなくfloatでしか存在しないため
SeriesとDataFrameは、同種数データセットでは、これはあまり違いをもたらさないが
巨大なデータセットではメモリ使用量に深刻な影響を与える

補足

この例で、インデックスが同じ順序で同じ要素を含んでいたら例外的なことになる
その場合、デカルト積はつくられない。インデックスがそのままの位置でアラインメントする

次のコードでは、要素が全く同じアラインメントをして、データ型が整数のままであることに注意

a 0
a 2
a 4
b 6
b 8
dtype: int64

インデックスの要素は同じだが順序が異なる場合、デカルト積が作られる
s2の順序を変えて同じ処理をする

a 2
a 3
a 4
a 3
a 4
a 5
a 4
a 5
a 6
b 3
b 4
b 4
b 5
dtype: int64

同じ演算でpandasが非常に異なる結果を出すのが興味深い
もしもpandasがデカルト積しか返せないとしたら、DataFrameのカラムの足し合わせという
ごく単純な操作でも、要素の個数が爆発的に増えてしまう
このレシピでは、Seriesの要素数が異なる。
Ptyhonやその他のプログラミング言語では配列のようなデータ構造で
演算の次元の要素数が同じでないと演算を許さない
pandasでは演算の前にインデックスをアラインメントすることで、演算を許す

In [2]: import pandas as pd
import numpy as np
s1 = pd.Series(index=list('aaab'), data=np.arange(4))
s1

Out[2]:

In [20]: s2 = pd.Series(index=list('cababb'), data=np.arange(6))
s2

Out[20]:

In [21]: s1 + s2

Out[21]:

In [3]: s1 = pd.Series(index=list('aaabb'), data=np.arange(5))
s2 = pd.Series(index=list('aaabb'), data=np.arange(5))
s1 + s2

Out[3]:

In [4]: s1 = pd.Series(index=list('aaabb'), data=np.arange(5))
s2 = pd.Series(index=list('bbaaa'), data=np.arange(5))
s1 + s2

Out[4]:

