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2章 教師あり学習（P27）

2.1 クラス分類と回帰（P27）
教師あり：クラス分類、回帰分類
クラス分類
２クラス分類
一方を「陽性（positive）」と片方を「陰性（negative）」という呼び方 ← 良い悪いの意味ではない

多クラス分類
アイリスなど

回帰分類
連続「（数）値」の予測

クラス分類と回帰問題の区別の仕方
出力が連続値であれば回帰

2.2　汎化、過剰適合、適合不足（P28）
手元のデータに過剰にマッチすること：過剰適合（過学習）
訓練データに対しては、いくらでも正確な予測はできてしまう
あるデータがある。そのデータのみからであれば規則性は出る！
なぜなら答えを知っているから（過剰適合、過学習）

逆に、訓練データにもきちんと適用できることを「汎化」できている（Good）という
未知のデータに対して予測したいため、汎化性能が高いほうがよい
我々は常に最も単純なモデルを求めるが、実際にはそのモデルは機能しない（適合不足、未学習）
つまり、最良の汎化性能を示すスイートスポットがある、それを見つける

2.2.1　モデルの複雑さとデータセットの大きさ（P31）
教師あり学習において、より多くのデータを用い、適度に複雑なモデルを用いると、驚くほどうまくいことがある
データ量は大事

2.3　教師あり機械学習アルゴリズム（P31）
どのようにデータから学習し、どのように予測を行うのか、を見ていく
モデルを理解することで個々の機械学習アルゴリズムの働き方をよく理解できる

mglearnとは、この作者が作成したライブラリを指す
グラフ描画やデータロードで他のコードが見にくくならないようするためつくったもの
mglearnが出てきてもあまり気にせず他のコードを見たほうが良い

2.3.1　サンプルデータセット（P31）
分類用：2つの特徴量を持つ26のデータポイント

X.shape: (26, 2)

回帰用：waveデータセット。1つの特徴量と、モデルの対象となる連続値のターゲット変数
x軸に特徴量を、y軸に回帰ターゲットをもつ

Text(0, 0.5, 'Target')

２次元であれば可視化は簡単。２つ以上の特徴量は表現がむずかしくなる
まずは低次元のデータセットでアルゴリズムを検討するのは問題ない（高次元には通用しない前提で）

SAMPLE1_ウィスコンシン乳癌データセット
乳癌の腫瘍を計測
害のない腫瘍：良性（benign）
癌性の腫瘍：悪性（malignant）

組織の測定結果から腫瘍が悪性かどうかを予測するように学習させる
scikit-learnに含まれているデータセット

cancer.keys(): 
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])

scikit-learnに含まれているデータセットは、Bunch（クラスのオブジェクト）に格納されている
bunch.key でアクセスできる（Not bunch['key']）←よくわからん

np.bincount()  ：各インデックスの要素がいくつずつあるかをカウント（malignant、benignの個数）している

array([212, 357])

(569, 30)

array([1.799e+01, 1.038e+01, 1.228e+02, 1.001e+03, 1.184e-01, 2.776e-01,
       3.001e-01, 1.471e-01, 2.419e-01, 7.871e-02, 1.095e+00, 9.053e-01,
       8.589e+00, 1.534e+02, 6.399e-03, 4.904e-02, 5.373e-02, 1.587e-02,
       3.003e-02, 6.193e-03, 2.538e+01, 1.733e+01, 1.846e+02, 2.019e+03,
       1.622e-01, 6.656e-01, 7.119e-01, 2.654e-01, 4.601e-01, 1.189e-01])

array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',
       'mean smoothness', 'mean compactness', 'mean concavity',
       'mean concave points', 'mean symmetry', 'mean fractal dimension',
       'radius error', 'texture error', 'perimeter error', 'area error',
       'smoothness error', 'compactness error', 'concavity error',
       'concave points error', 'symmetry error',
       'fractal dimension error', 'worst radius', 'worst texture',
       'worst perimeter', 'worst area', 'worst smoothness',
       'worst compactness', 'worst concavity', 'worst concave points',
       'worst symmetry', 'worst fractal dimension'], dtype='<U23')

(30,)

array(['malignant', 'benign'], dtype='<U9')

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
       0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
       1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
       1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0])

(569,)

569のデータのうち、悪性：212, 良性：357になっている

クラスごとのサンプル数：
{'malignant': 212, 'benign': 357}

SAMPLE2_ボストン近郊の住宅地の住宅価格

dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])

.. _boston_dataset:

Boston house prices dataset
---------------------------

**Data Set Characteristics:**  

    :Number of Instances: 506 

    :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.

    :Attribute Information (in order):
        - CRIM     per capita crime rate by town
        - ZN       proportion of residential land zoned for lots over 25,000 sq.ft.
        - INDUS    proportion of non-retail business acres per town
        - CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        - NOX      nitric oxides concentration (parts per 10 million)
        - RM       average number of rooms per dwelling
        - AGE      proportion of owner-occupied units built prior to 1940
        - DIS      weighted distances to five Boston employment centres
        - RAD      index of accessibility to radial highways
        - TAX      full-value property-tax rate per $10,000
        - PTRATIO  pupil-teacher ratio by town
        - B        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
        - LSTAT    % lower status of the population
        - MEDV     Median value of owner-occupied homes in $1000's

    :Missing Attribute Values: None

    :Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression diagnostics
...', Wiley, 1980.   N.B. Various transformations are used in the table on
pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression
problems.   
     
.. topic:: References

   - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
   - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.

(506, 13)

array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
        4.9800e+00],
       [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
        9.1400e+00],
       [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
        4.0300e+00],
       ...,
       [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
        5.6400e+00],
       [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
        6.4800e+00],
       [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
        7.8800e+00]])

(506,)

(13,)

array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
       'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7')

ここではこのデータセットを拡張し、１３の測定結果だけを特徴量とするのではなく
特徴量間の積（交互作用（interaction))も見る
つまり、例えば犯罪率と高速道路への利便性を特徴量として見るだけでなくそれらの積も特徴量として考える
このように導き出された特徴量を含めることを「**特徴量エンジニアリング**(feature engineering)」と呼ぶ

(506, 104)

この104の特徴量は、もとの13の特徴量に、13の要素の中から２個の要素を選ぶ組み合わせ数である91を足したもの。
これから、これらのデータセットを用いて、様々な機械学習のアルゴリズムの特徴を説明する

2.3.2　k-最近傍法（P36）
k-最近傍法（k-NN）は最も単純な機械学習アルゴリズム
訓練データセットをセットするだけ
予測は、訓練データセットの中から一番近い点「最近傍点」を見つける

2.3.2.1 k-NNによるクラス分類（p36）

３点のテスト（星印）に対し、最も近い丸が予測されたラベルになる。近傍点は１つとは限らない。
１つ以上の場合、投票でラベルを決める
つまり、その点に対する近傍点に属するクラスが多いほうのラベルが付与される
多数派のクラスが採用される

最近傍点（k）は1つでも3つでも複数でよい。これがk-最近傍点の名前の由来
1つ以上とした場合、多数決でラベルを決める
つまり、近傍点のうち、いくつがクラス0に属し、いくつがクラス1に属するかを数える
多数決で多いクラスを採用する
下図の左上の予測結果は上の結果と違ってくる

scikit-learnを用いて、k-最近傍法アルゴリズムが適用できるかをみていく（P38）

KNeighborsClassifier(n_neighbors=3)

array([[11.54155807,  5.21116083],
       [10.06393839,  0.99078055],
       [ 9.49123469,  4.33224792],
       [ 8.18378052,  1.29564214],
       [ 8.30988863,  4.80623966],
       [10.24028948,  2.45544401],
       [ 8.34468785,  1.63824349]])

予測を行うには predict() メソッドを利用

array([1, 0, 1, 0, 1, 0, 0])

0.8571428571428571

つまり、このKNNモデルはテストデータセットのサンプルに対し、86％正しくクラスを予測した

2.3.2.2 kNeighborClassfierの解析（p39）

２次元のデータセットについては、xy平面のすべての点について予測を行うことは可能
あるデータポイント（点）に対し、分類されていたであろうクラスに従って色付けもできる
こうするとアルゴリズムがクラス0とクラス１に割り当てる場合の「決定境界（decison boundary）」が見える
以下はk=1,3,9の場合の決定境界

<matplotlib.legend.Legend at 0x7f91df82bcd0>

左図からわかるように、k=1の場合、決定境界は訓練データに近くなる（＝訓練データに過剰にマッチした状態）
より多くの最近傍点（k=9）を考慮すると、決定境界は滑らかになる
滑らかな境界は、単純なモデルに対応する
つまり、最近傍点が少ない場合は複雑度の高いモデル（下図・右側・過学習）に対応し
最近傍点が多い場合は複雑度の低いモデル（下図・左側・弱学習）に対応する

極端な例として、近傍点＝訓練データ数(26)にすると
すべてのテストデータポイントは全く同じ近傍点（つまりすべての訓練データ26）を持つため
すべての予測結果は同じになる

モデルの複雑さと汎化性能の関係を確認する（P40)

cancerデータセットを利用
データを分割し、訓練セットに対する性能とテストセットに対する性能を近傍点の数に対して評価する

<matplotlib.legend.Legend at 0x7f986f92abe0>

x軸：最近傍点の数（1～10）によって、訓練精度とテスト精度がどう変わるかの表
テストの精度が高くないと意味がない
最近傍点が少ない：モデルは複雑になる。訓練精度は高くなり、過剰にマッチする（＝バイアス低、バリアンス高）
最近傍点が多い： モデルはシンプルになりすぎ、精度は下がる
最良のポイントは6のあたりにある
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2.3.2.3 k-近傍回帰（P41）

k-NNは分類の他、回帰も扱える
1最近傍点を利用、waveデータセットを利用
３つのテストデータポイントを緑色の星印としておく
1最近傍点を用いる予測では、最近傍点の値をそのまま使う。
青い星印が予測をしたいデータポイント（test prediction）

最近傍回帰を用いたwaveデータセットでの予測

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-34-a01450a9b184> in <module>
----> 1 mglearn.plots.plot_knn_regression(n_neighbors=1)
      2 # エラー出るけど無視

~/Desktop/github/PYTHON/jupyter_notebook/intro_ml_with_p/mglearn/plot_knn_regression.py in plot_knn_regression(n_neighbors)
     34                ["training data/target", "test data", "test prediction"],
     35                ncol=3, loc=(.1, 1.025))
---> 36     plt.ylim(-3.1, 3.1)
     37     plt.xlabel("Feature")
     38     plt.ylabel("Target")

TypeError: 'tuple' object is not callable

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-33-ac7c384b2af1> in <module>
      1 # より多くの最近傍点を利用する。複数の最近傍点を用いる場合は平均値を用いる
----> 2 mglearn.plots.plot_knn_regression(n_neighbors=3)

~/Desktop/github/PYTHON/jupyter_notebook/intro_ml_with_p/mglearn/plot_knn_regression.py in plot_knn_regression(n_neighbors)
     34                ["training data/target", "test data", "test prediction"],
     35                ncol=3, loc=(.1, 1.025))
---> 36     plt.ylim(-3.1, 3.1)
     37     plt.xlabel("Feature")
     38     plt.ylabel("Target")

TypeError: 'tuple' object is not callable

回帰のためのk-NNは、scikit-learnのKNeighborsRegressorクラスに実装されている
KNeighborsClassfierと同様に利用できる

Test set prediction:
 [-0.05396539  0.35686046  1.13671923 -1.89415682 -1.13881398 -1.63113382
  0.35686046  0.91241374 -0.44680446 -1.13881398]

scoreメソッドでモデルを評価
回帰予測器はR^2スコアを返す＝決定係数（coefficient of determination)

回帰モデルの予測の正確さの指標（０～１）
結果 0.83 比較的よいモデル（らしいが？）

In [1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import mglearn
from IPython.display import display

In [3]: # データセットの作成
X, y = mglearn.datasets.make_forge()

# データセットをプロット
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.legend(['Class 0','Class 1'], loc=4)
plt.xlabel('First feature')
plt.ylabel('Second feature')
print('X.shape: {}'.format(X.shape))

In [5]: X, y = mglearn.datasets.make_wave(n_samples=40)
plt.plot(X, y, 'o')
plt.ylim = (-3, 3)
plt.xlabel('Feature')
plt.ylabel('Target')

Out[5]:

In [8]: from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
print('cancer.keys(): \n{}'.format(cancer.keys()))

In [9]: np.bincount(cancer['target'])

Out[9]:

In [6]: cancer['data'].shape

Out[6]:

In [7]: cancer['data'][0]

Out[7]:

In [8]: # 各特徴量
cancer['feature_names']

Out[8]:

In [9]: cancer['feature_names'].shape

Out[9]:

In [12]: cancer['target_names']

Out[12]:

In [13]: cancer['target'][:100]

Out[13]:

In [14]: cancer['target'].shape

Out[14]:

In [15]: print("クラスごとのサンプル数：\n{}".format(
    {n: v for n, v in zip(cancer['target_names'], np.bincount(cancer['target']))}))
            

In [17]: from sklearn.datasets import load_boston
boston = load_boston()
boston.keys()

Out[17]:

In [22]: print(boston['DESCR'])

In [18]: boston['data'].shape

Out[18]:

In [19]: boston['data']

Out[19]:

In [20]: boston['target'].shape

Out[20]:

In [18]: boston['feature_names'].shape

Out[18]:

In [19]: boston['feature_names']

Out[19]:

In [20]: # この導きだされたデータセットはload_extended_boston関数でロードする
X, y = mglearn.datasets.load_extended_boston()
X.shape

Out[20]:

In [24]: # 新しいデータポイント（★印）に対し、もっとも近傍な訓練データを線で結んだ。
mglearn.plots.plot_knn_classification(n_neighbors=1)

In [22]: mglearn.plots.plot_knn_classification(n_neighbors=3)

In [25]: from sklearn.model_selection import train_test_split
X, y = mglearn.datasets.make_forge()

# データを訓練・テストセットに分割
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

In [27]: # KNNをインポート、近傍点のパラは3で設定
from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=3)

In [28]: # 訓練セットでクラス分類器を訓練する。KNeighborsClassfierの場合はデータセットを格納するだけ
clf.fit(X_train, y_train)

Out[28]:

In [26]: X_test

Out[26]:

In [31]: # テストセットに対する予測（テストセット7個の各データポイントに対し、クラス1、0に仕分けられた）
clf.predict(X_test)

Out[31]:

In [28]: # モデルの汎化性能を評価
clf.score(X_test, y_test)

Out[28]:

In [32]: fig, axes = plt.subplots(1, 4, figsize=(14, 4))

for n_neighbors, ax in zip([1, 3, 9, 26], axes):
    clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(X, y)
    
    mglearn.plots.plot_2d_separator(clf, X, fill=True, eps=0.5, ax=ax, alpha=.4)
    mglearn.discrete_scatter(X[:, 0], X[:, 1], y, ax=ax)
    
    ax.set_title("{} neighbor(s)".format(n_neighbors))
    ax.set_xlabel('feature 0')
    ax.set_ylabel('feature 1')
    
axes[0].legend(loc=3)

Out[32]:

In [30]: from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, 
    # 訓練用とテスト用の正解ラベルの比率を同じにする
    stratify=cancer.target,
    # 66とは何だ？
    random_state=66)

training_accuracy = []
test_accuracy = []

# n_neighborsを1から10まで試す
neighbors_settings = range(1,11)

# neighbors：近傍点？
for n_neighbors in neighbors_settings:
    # モデルを構築
    clf = KNeighborsClassifier(n_neighbors=n_neighbors)
    clf.fit(X_train, y_train)
    # 訓練セット精度を記録
    training_accuracy.append(clf.score(X_train, y_train))
    # 汎化精度を記録
    test_accuracy.append(clf.score(X_test, y_test))
    
plt.plot(neighbors_settings, training_accuracy, label='trainning accuracy')
plt.plot(neighbors_settings, test_accuracy,     label='test accuracy')
plt.ylabel('Accuracy')
plt.xlabel('n_neighbors')
plt.legend()

Out[30]:

In [34]: mglearn.plots.plot_knn_regression(n_neighbors=1)
# エラー出るけど無視

In [33]: # より多くの最近傍点を利用する。複数の最近傍点を用いる場合は平均値を用いる
mglearn.plots.plot_knn_regression(n_neighbors=3)

In [36]: from sklearn.neighbors import KNeighborsRegressor

X, y = mglearn.datasets.make_wave(n_samples=40)

# waveデータセットを分割
X_train, X_test, y_train, y_test = train_test_split(
    X, y, random_state=0)

# ３つの最近傍点を考慮するように設定してモデルのインスタンスを生成
reg = KNeighborsRegressor(n_neighbors=3)

# 訓練データと訓練ターゲットを用いてモデルを学習させる
reg.fit(X_train, y_train)

# テストセットに対する精度
print('Test set prediction:\n {}'.format(reg.predict(X_test)))



Test set R^2: 0.83

2.3.2.4 KNeighborsRegressorの解析（P44）

1次元のデータセットに対して、すべての値に対する予測値がどのようになるかを見ていく（？）
これにはたくさんのデータポイントを持つデータセットをつくればよい

<matplotlib.legend.Legend at 0x7f98722f3790>

このグラフからわかるように１最近傍点による回帰では予測はすべて訓練データの点を通っている
このため、予測は不安定になる。逆に最近傍点を増やすと予測はスムースだが訓練データに対する適合度は下がる

2.3.2.5 利点と欠点とパラメータ（P45）

KNeighbors分類器の重要なパラメーター
近傍点の数
データポイント間の距離測度

実用上は、近傍点の数は3や5程度の小さな数値で十分な場合がほとんどだが調整する必要がある
適切な距離測度の選択はこの本では説明しないが、デフォルトではユークリッド距離を用いることが多い

k-最近傍法の利点：モデルがわかりやすい、あまり調整しなくても性能がよい
より高度な技術を利用する前に、このアルゴリズムをベースラインとして試すと良い
最近傍法のモデル構築は高速だが、訓練セットが大きくなると遅くなる
k-最近傍法アルゴリズムを使う場合は、データの前処理が重要（3章 教師なし学習と前処理、を参照）
k-最近傍法は、多数の特徴量（数百以上）を持つデータセットではうまく機能しない
またほとんどの特徴量が多くの場合0となるような疎なデータセット（sparse dataset）だと特に性能が悪い
つまり、k-最近傍法は理解しやすいメリットはあるが、処理速度が遅く多数の特徴量を扱うことができないため
実際にはほとんど利用されていない。次の手法にはこれらの問題点はない

In [37]: print('Test set R^2: {:.2f}'.format(reg.score(X_test, y_test)))
# 比較的よい

In [95]: # 日本語フォントの設定
font_options = {'family': 'Hiragino Sans'}
plt.rc('font', **font_options)

# プロット先を3つ作る
fig, axes = plt.subplots(1, 3, figsize = (15, 4))

# -3～3までの間にデータポイントを1000点作る
# reshapeの-1は自動の意（行：自動、列：１、の意）
line = np.linspace(-3, 3, 1000).reshape(-1,1)

for n_neighbors, ax in zip([1, 3, 9], axes):
    # モデルを構築
    reg = KNeighborsRegressor(n_neighbors = n_neighbors)
    # 訓練データセットをプロットし学習させる
    reg.fit(X_train, y_train)

    ax.plot(line, reg.predict(line))
    ax.plot(X_train, y_train, '^')
    ax.plot(X_test, y_test, 'v')
    ax.set_title(
    "{} 近傍点\n 訓練スコア: {:.2f} テストスコア{:.2f}".format(
    n_neighbors, reg.score(X_train, y_train), reg.score(X_test, y_test)))
    ax.set_xlabel("特徴量")
    ax.set_ylabel("目的変数")
  
axes[0].legend(["モデルによる予測値", "訓練データ", "テストデータ"], loc="best")

Out[95]:


