
 ⾃動化について

 『Pythonではじめるデータラングリングについて』より

 タスクが明確でしっかり定義されており、結果が簡単に出せるものなら⾃動化は簡単

 そうでなくても、タスクの⼀部だけでも⾃動化は可能

 結果が明確で定期的に発⽣するタスクはどれも⾃動化すべき

 ⾃動化が適切でない場合

 ● タスクの発⽣頻度が稀で、⾮常に複雑な場合は⾃分で⾏ったほうが良い

 ● タスクの結果が成功しているかどうかを簡単に判断できないもの

 ● 適切な⽅法を判断するために⼈間が介在していなければならないもの

 ● 失敗が許されない場合

 ⾃動化が適切かどうかわからないときには、定期的に⾏っている何か⼩さなタスクを⾃動化

 してみて、それがどうなるか⾒てみるとよい。

 ⾃動化のためのステップ
 ⾃動化は次の事項をドキュメント化するところから始めるとやりやすい

 ● このタスクをいつ始めなければならないか

 ● このタスクには締め切り、投⼊時間の上限があるか。あるなら、いつまでに仕上げ

 る必要があるか

 ● このタスクのために必要な⼊⼒は何か

 ● このタスクの成功、あるいは部分的な成功とは

 ● このタスクが失敗したら、何が起こるか

 ● このタスクが作り出す、または提供するものは何か。それは誰に対してか、またど

 のようにして⾏うのか

 ● タスクが終わった後何が起こるのか

 これらのうち５つ以上に答えられれれば⾃動化の余地がある。そうでなければもっと調査を

 重ね、作業を明確化してから始めたほうが良い。

 ⾃動化のための基本的な⼿順

 1. 問題を明らかにし、⼩さな仕事に分割する

 2. 個々のサブタスクが⼊⼒として何を必要とし、何をする必要があり、完了とされる

 ためには何が必要かを正確に記述する

 3. どのようにすればそれらの⼊⼒が⼊⼿でき、タスクを実⾏しなければならないのは

 いつなのかをはっきりさせる

 4. タスクのコーディングに取りかかり、実際のデータかサンプルデータを使ってテス

 トする

 5. タスクとスクリプトをクリーンアップし、ドキュメントを追加する

 6. エラーのデバッグ、処理の成功に重点を置いてロギング機能を追加する

 7. コードをリポジトリにサブミットし、⼿作業でテストする。必要に応じて変更を加

 える

 8. ⼿作業を⾃動化された作業に置き換えてスクリプトを⾃動化に向けて準備する

 9. タスクの⾃動化が始まったら、ログとアラートに注意し、エラーやバグを修正す

 る。またテストとドキュメントをアップデートする

 10. ログをどれくらいの頻度でチェックしてエラーを探すかについて⻑期的なプ

 ランを⽴てる

