
 python 例外処理

 python 例外処理

 例外（Exception）

 ● エラー発⽣→「例外オブジェクト」が作られる

 ● その例外をキャッチし、エラーの種類や内容から後続処理を決める仕組みのこと

 ● エラーは⼤きく２種類

 ○ プログラムの「実⾏前」にわかるエラー（例：SyntaxError）

 ○ プログラムの「実⾏後」にわかるエラー（例：ExceptionError）

 ● 例外オブジェクト

 ○ エラーの種類や内容が記載されている

 ○ Exceptionクラスを親として、種類ごとに複数分類されている

 try~except

 ● 例外を捕まえる

 ● 例外が発⽣すると処理が中断されるが、例外が発⽣しても処理の実⾏を続けたい、

 または終了処理を⾏いたい場合もある

 ● try ~ except で例外を捕まえ、処理を分ける

 import sys

 for fn in sys.argv[1:]:

 try:             ←例外が発⽣したらexcept⽂へジャンプ

 f = open(fn)

 except FileNotFoundError: ←クラスを指定して特定の例外だけを受け取る※

 print(“{}というファイルは存在しません”.format(fn))

 else:         ←例外が発⽣しなかった場合の処理

 try:          elseはexceptより後に記載

 print(fn, len(f.read()))

 finally: ←例外の発⽣有無に関わらず、実⾏する処理

 f.close()

 ※：複数列記も可能（例外クラスを丸括弧で囲み、カンマで区切る）

 python 例外処理

 while True:

 try:

 x = int(input(‘数値を⼊れてください：’))

 break

 except ValueError: ・・・※

 print(‘有効な数値ではありません。もう⼀度どうぞ...’)

 ※箇所において、例外の型が「ValueError」でなかった場合、送出された例外はさらに外

 側にあるtry⽂に渡される（try⽂が⼊れ⼦になっている場合）。ハンドラが⾒つからなけ

 れば、これは未処理例外（unhandled exception）となる。

 python 例外処理

 With⽂

 ● 例外とよく似た機能をもつ

 ● ファイルが存在しなかったらWithブロックに⼊る前に例外が発⽣するため、With内

 の処理は実⾏されない

 ● 例外に⽐べ簡潔で済む

 with open(fn) as f:

 for line in f:

 print(line)

 例外とトレースバック

 ● 例外を使うことの最⼤の利点

 ○ 「エラーの発⽣位置とエラー処理を分離することできる」

 ● raiseやトレースバックはよくわからないので⾶ばす

 実⾏前のエラー（SyntaxError：構⽂エラー）

 ● SyntaxError
 ○ ⽂法、構⽂エラー

 ○ クオーテーションや括弧がない、インデント処理、など

 実⾏中のエラー（Exception：例外エラー）

 ● NameError
 ○ 未定義の変数や関数を利⽤（代⼊を含む）した時

 ○ インポートしていないモジュールを利⽤した時、など

 ○ ほとんどがタイプミス

 python 例外処理

 ● AttributeError
 ○ オブジェクトやメソッドに未定義の属性を参照しようとした時

 ○ 関数に引数を渡す場合等に期待している型と異なる型のOBJを渡した時、等

 ○ ほとんどがタイプミス

 ● TypeError
 ○ 処理の過程でふさわしくない型のOBJが使われた時

 ○ ⽂字列と数値を⾜す、など

 ○ リストの要素をインデックスで参照する際、整数以外のOBJをインデックス

 として使った場合、など

 ○ 関数の引数として、想定されていない型のオブジェクトが渡された時

 ○ 例

 ■ unsupported operand type(s) for +: ‘int’ and ‘str’

 ■ cannot concantenate ‘str’ and ‘int’ objecgts

 ■ TypeError: list indices must be integers

 ● リストのインデックスは整数でなければならない

 ■ Iteration over non-sequence

 ● シーケンス型でないOBJを使ってイテレーションした

 ● IndexError
 ○ リストのようなシーケンスをインデックスで参照しようとした場合

 ○ シーケンスの要素数を超える数を指定した場合

 ● KeyError
 ○ 辞書型の要素をキーで参照する際、存在しないキーを指定した場合

 ● ImportError
 ○ インポートするモジュール、関数が⾒つからない等

 ● UnicodeDecodeError, UnicodeEncodeError
 ○ ⽂字列のデコード、エンコードのエラー

 ● ZeroDivisonError
 ○ 数値を０で割ろうとした場合

 python 例外処理

 def spam(divide_by):

 try:

 return 42 / divide_by

 except ZeroDivisionError:

 print('不正な引数です')

 print(spam(2))

 print(spam(12))

 print(spam(0)) ←これだけが終了する

 print(spam(1))

 21.0

 3.5

 不正な引数です

 None

 42.0

 python 例外処理

 例外を起こす

 ● 例外を起こすとは「コード実⾏を停⽌して、プログラム実⾏をexcept⽂に移せ」と

 いう意味

 ● try〜except、raiseを利⽤した例

 def box_print(symbol, width, height):

 if len(symbol) != 1:

 raise Exception ('symbolは１⽂字でなければならない')

 if width <= 2:

 raise Exception ('widthは２より⼤きくなければならない')

 if height <= 2:

 raise Exception ('heightは２より⼤きくなければならない')

 print(symbol * width)

 for i in range(height - 2):

 print(symbol + (' ' * (width - 2)) + symbol)

 print(symbol * width)

 for sym, w, h, in (('*', 4, 4), ('0', 20, 5), ('x', 4, 3), ('/', 3, 3)):

 try:

 box_print(sym, w, h)

 except Exception as err:

 print('例外が起こりました： ' + str(err))

 * *

 * *

 00000000000000000000

 0 0

 0 0

 0 0

 00000000000000000000

 例外が起こりました： widthは２より⼤きくなければならない

 例外が起こりました： symbolは１⽂字でなければならない

 python 例外処理

 トレースバック

 ● エラー情報、のこと

 ● 記載されている内容

 ○ エラーMSG

 ○ エラーの起こった⾏番号

 ● エラーに⾄る関数呼び出しの並び（コールスタック）

 ● どの呼び出しがエラーを招いたかわかる

 python 例外処理

 ● 例外がきちんと処理されないと常にトレースバック が表⽰される

 ● traceback.format_exc() を呼び出すと⽂字列として取得可能

 ● 使い⽅としては、例外が起こったらプログラムを異常停⽌させず、トレースバック

 情報をログに書き出し、プログラムの実⾏を継続可能

 ● 後でログファイルを確認し、でバックすることができる

 import pathlib

 f_p = pathlib.Path(r'/Users/mbp441/Desktop/errorInfo.txt')

 import traceback

 try:

 raise Exception('これはエラーMSGです')

 except:

 error_file = open(f_p, 'w')

 error_file.write(traceback.format_exc())

 error_file.close()

 print('トレースバック情報をerrorInfo.txtに書き込みました')

 # トレースバック情報をerrorInfo.txtに書き込みました

 # Traceback (most recent call last):

 # File "<ipython-input-48-760621251615>", line 6, in <module>

 # raise Exception('これはエラーMSGです')

 # Exception: これはエラーMSGです

 python 例外処理

 アサート

 ● プログラムが正常に動けば通る処理だが、念のためチェックしておきたい時に利⽤

 ● 本番では使えない

 ● 使⽤する⽬的は、バグの根本原因と思われる箇所を素早く⾒つけ出せるようにする

 ため。

 ● 構⽂

 ○ assert 条件式, 条件式がFalseの場合に出⼒するメッセージ

 ○ 条件式が True の場合は何も起こりません。

 ○ 条件式が False の場合、AssertionError の例外が発⽣し、必要に応じEMGが

 ⽣成される

 >>> kitai = 100

 >>> input = 1

 >>> assert kitai == input, '期待する値[{0}], ⼊⼒値[{1}]'.format(kitai,

 input)

 Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 AssertionError: 期待する値[100], ⼊⼒値[1]

 ちゃんと例外を処理するならこんな感じ。

 >>> try:

 ... kitai = 100

 ... input = 1

 ... assert kitai == input, '期待する値[{0}], ⼊⼒値[{1}]'.format(kitai,

 input)

 ... except AssertionError as err:

 ... print('AssertionError :', err)

 ...

 AssertionError : 期待する値[100], ⼊⼒値[1]

 python 例外処理

 def f(a, b):

 assert type(a) == int, 'invalid a'

 assert type(b) == str, 'invalid b'

 return a + int(b)

 # 本番モードでは以下になってしまうため

 def f(a, b):

 return a + int(b)

 # 本来であればこう書くべき（本番モード）

 def f(a, b):

 if not isinstance(a, int):

 raise TypeError('invalid a')

 if not isinstance(b, str):

 raise TypeError('invalid b')

 return a + int(b)

